1. Berthoz A, Graf W, Vidal PP. The head-neck sensory motor system. New York (NY): Oxford University Press; 1992.
3. Coakwell MR, Bloswick DS, Moser R Jr. High-risk head and neck movements at high G and interventions to reduce associated neck injury. Aviat Space Environ Med 2004;75:68–80.
4. Nouri A, Tetreault L, Singh A, Karadimas SK, Fehlings MG. Degenerative cervical myelopathy: epidemiology, genetics, and pathogenesis. Spine (Phila Pa 1976) 2015;40:E675–93.
7. Le H, Thongtrangan I, Kim DH. Historical review of cervical arthroplasty. Neurosurg Focus 2004;17:E1.
8. Grauvogel J, Scheiwe C, Kaminsky J. Use of Piezosurgery for removal of retrovertebral body osteophytes in anterior cervical discectomy. Spine J 2014;14:628–36.
10. Jacobs W, Willems PC, Kruyt M, et al. Systematic review of anterior interbody fusion techniques for single- and double-level cervical degenerative disc disease. Spine (Phila Pa 1976) 2011;36:E950–60.
12. Panjabi MM, Cholewicki J, Nibu K, Grauer J, Babat LB, Dvorak J. Critical load of the human cervical spine: an in vitro experimental study. Clin Biomech (Bristol, Avon) 1998;13:11–7.
13. Yoganandan N, Kumaresan S, Voo L, Pintar FA. Finite element applications in human cervical spine modeling. Spine (Phila Pa 1976) 1996;21:1824–34.
15. Kim YH, Khuyagbaatar B, Kim K. Recent advances in finite element modeling of the human cervical spine. J Mech Sci Technol 2018;32:1–10.
16. Kopperdahl DL, Keaveny TM. Yield strain behavior of trabecular bone. J Biomech 1998;31:601–8.
17. Qi Y, Lewis G. Influence of assigned material combination in a simulated total cervical disc replacement design on kinematics of a model of the full cervical spine: a finite element analysis study. Biomed Mater Eng 2016;27:633–46.
18. Natarajan RN, Chen BH, An HS, Andersson GB. Anterior cervical fusion: a finite element model study on motion segment stability including the effect of osteoporosis. Spine (Phila Pa 1976) 2000;25:955–61.
19. Zhang QH, Teo EC, Ng HW. Development and validation of a CO-C7 FE complex for biomechanical study. J Biomech Eng 2005;127:729–35.
20. Brolin K, Halldin P. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics. Spine (Phila Pa 1976) 2004;29:376–85.
21. Kumaresan S, Yoganandan N, Pintar FA. Finite element modeling approaches of human cervical spine facet joint capsule. J Biomech 1998;31:371–6.
22. Gilbertson LG, Goel VK, Kong WZ, Clausen JD. Finite element methods in spine biomechanics research. Crit Rev Biomed Eng 1995;23:411–73.
23. Nikkhoo M, Cheng CH, Wang JL, et al. Development and validation of a geometrically personalized finite element model of the lower ligamentous cervical spine for clinical applications. Comput Biol Med 2019;109:22–32.
24. Yang KH, Kish VL. Compressibility measurement of human intervertebral nucleus pulposus. J Biomech 1988;21:865.
25. Iatridis JC, Weidenbaum M, Setton LA, Mow VC. Is the nucleus pulposus a solid or a fluid?: mechanical behaviors of the nucleus pulposus of the human intervertebral disc. Spine (Phila Pa 1976) 1996;21:1174–84.
26. Hill R. Aspects of invariance in solid mechanics. Adv Appl Mech 1978;18:1–72.
27. Storakers B. On material representation and constitutive branching in finite compressible elasticity. J Mech Phys Solids 1986;34:125–45.
28. Li Y, Lewis G. Influence of the constitutive material behavior model assigned to the annulus fibrosus and the nucleus pulposus on the biomechanical performance of a model of the cervical spine: a finite element analysis study. J Mech Med Biol 2010;10:151–66.
29. Cassidy JJ, Hiltner A, Baer E. Hierarchical structure of the intervertebral disc. Connect Tissue Res 1989;23:75–88.
30. Eberlein R, Holzapfel GA, Schulze-Bauer CA. An anisotropic model for annulus tissue and enhanced finite element analyses of intact lumbar disc bodies. Comput Methods Biomech Biomed Engin 2001;4:209–29.
31. Yoganandan N, Haffner M, Maiman DJ, et al. Epidemiology and injury biomechanics of motor vehicle related trauma to the human spine. SAE Trans 1989;98:1790–809.
33. Brolin K, Halldin P, Leijonhufvud I. The effect of muscle activation on neck response. Traffic Inj Prev 2005;6:67–76.
34. Hedenstierna S. 3D finite element modeling of cervical musculature and its effect on neck injury prevention [dissertation] Huddinge: Royal Institute of Technology. 2008
36. Yoganandan N, Kumaresan S, Pintar FA. Biomechanics of the cervical spine: part 2. cervical spine soft tissue responses and biomechanical modeling. Clin Biomech (Bristol, Avon) 2001;16:1–27.
37. Winters JM, Stark L. Analysis of fundamental human movement patterns through the use of in-depth antagonistic muscle models. IEEE Trans Biomed Eng 1985;32:826–39.
38. Winters JM, Stark L. Estimated mechanical properties of synergistic muscles involved in movements of a variety of human joints. J Biomech 1988;21:1027–41.
39. Winters JM,Hill-based muscle models: a systems engineering perspective. Winters JM, Woo SL, editors. Multiple muscle systems: biomechanics and movement organization. New York (NY): Springer; 1990. p.69–93.
42. Moussa A, Tanzer M, Pasini D. Cervical fusion cage computationally optimized with porous architected titanium for minimized subsidence. J Mech Behav Biomed Mater 2018;85:134–51.
43. Huang H, Liu J, Wang L, Fan Y. A critical review on the biomechanical study of cervical interbody fusion cage. Med Novel Technol Devices 2021;11:100070.
44. Choi J, Che L, Kim KN, et al. A finite element analysis of a biodegradable cervical plate and screw system. Asian J Pain 2017;3:12–6.
45. Gayzik FS, Moreno DP, Vavalle NA, Rhyne AC, Stitzel J. Development of a full human body finite element model for blunt injury prediction utilizing a multi-modality medical imaging protocol. In: Proceedings of the 12th International LS-DYNA Users Conference; 2012 Jun 3–5; Dearborn, USA. Livermore (CA): Ansys. 2012
46. Kumaresan S, Yoganandan N, Pintar FA, Maiman DJ. Finite element modeling of the cervical spine: role of intervertebral disc under axial and eccentric loads. Med Eng Phys 1999;21:689–700.
47. Liang D, Tu GJ, Han YX, Guo DW. Accurate simulation of the herniated cervical intervertebral disc using controllable expansion: a finite element study. Comput Methods Biomech Biomed Engin 2021;24:897–904.
48. Jalalian A, Gibson I, Tay EH. Computational biomechanical modeling of scoliotic spine: challenges and opportunities. Spine Deform 2013;1:401–11.
49. Lin M, Shapiro SZ, Doulgeris J, Engeberg ED, Tsai CT, Vrionis FD. Cage-screw and anterior plating combination reduces the risk of micromotion and subsidence in multilevel anterior cervical discectomy and fusion-a finite element study. Spine J 2021;21:874–82.
51. Park KM, Jung TG, Jeong SJ, Lee SJ. Comparative study on biomechanical behavior of various cervical stand-alone cage designs. J Korean Soc Precis Eng 2016;33:943–50.
52. Kwon JW, Bang SH, Kwon YW, et al. Biomechanical comparison of the angle of inserted screws and the length of anterior cervical plate systems with allograft spacers. Clin Biomech (Bristol, Avon) 2020;76:105021.
53. Lin M, Shapiro SZ, Engeberg ED, Tsai CT, Vrionis FD. Finite element analysis of the effect of dynamic plating on two-level anterior cervical discectomy fusion biomechanics. World Neurosurg 2022;163:e43–52.
54. Kiapour A, Massaad E, Shin JH. 237. Individual plates vs single plate for multilevel fixation results in superior biomechanics in anterior cervical fusion surgery. Spine J 2020;20:S117.
55. Chen C, Cheng B, Huang C, Jiang B, Chen D, Tao X. Finite element analysis of cervical spinal nerve tissue tolerance to whiplash injury: a preliminary study. In: Proceedings of the FISITA 2012 World Automotive Congress; 2012 Nov 27–30; Beijing, China. Berlin: Springer. 2013 pp 433–48.
56. Belytschko T, Kulak RF, Schultz AB, Galante JO. Finite element stress analysis of an intervertebral disc. J Biomech 1974;7:277–85.
57. Kumaresan S, Yoganandan N, Pintar FA. Finite element analysis of the cervical spine: a material property sensitivity study. Clin Biomech (Bristol, Avon) 1999;14:41–53.
59. Kleinberger M. Application of finite element techniques to the study of cervical spine mechanics. Warrendale (PA): SAE International; 1993.
61. De Jager M, Sauren AA, Thunnissen J, Wismans JS. A three-dimensional head-neck model: validation for frontal and lateral impacts. J Passeng Cars 1994;103:1660–76.
62. Van der Horst MJ. Human head neck response in frontal, lateral and rear end impact loading: modelling and validation. Eindhoven: Technische Universiteit Eindhoven; 2002.
63. Deng YC, Li X, Liu Y. Modeling of the human cervical spine using finite element techniques. Warrendale (PA): SAE International; 1999.