1. Wang Y, Videman T, Battie MC. ISSLS prize winner: lumbar vertebral endplate lesions: associations with disc degeneration and back pain history. Spine (Phila Pa 1976) 2012;37:1490–6.
2. Toyone T, Takahashi K, Kitahara H, Yamagata M, Murakami M, Moriya H. Vertebral bone-marrow changes in degenerative lumbar disc disease: an MRI study of 74 patients with low back pain. J Bone Joint Surg Br 1994;76:757–64.
3. Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 1988;166(1 Pt 1): 193–9.
4. Nakamae T, Yamada K, Shimbo T, et al. Bone marrow edema and low back pain in elderly degenerative lumbar scoliosis: a cross-sectional study. Spine (Phila Pa 1976) 2016;41:885–92.
5. Yamada K, Nakamae T, Shimbo T, et al. Targeted therapy for low back pain in elderly degenerative lumbar scoliosis: a cohort study. Spine (Phila Pa 1976) 2016;41:872–9.
6. Astrakas LG, Argyropoulou MI. Shifting from region of interest (ROI) to voxel-based analysis in human brain mapping. Pediatr Radiol 2010;40:1857–67.
7. Nasu K, Kuroki Y, Sekiguchi R, Nawano S. The effect of simultaneous use of respiratory triggering in diffusion-weighted imaging of the liver. Magn Reson Med Sci 2006;5:129–36.
8. Scott J, Huskisson EC. Graphic representation of pain. Pain 1976;2:175–84.
9. Starr AM, Wessely MA, Albastaki U, Pierre-Jerome C, Kettner NW. Bone marrow edema: pathophysiology, differential diagnosis, and imaging. Acta Radiol 2008;49:771–86.
10. Cobb JR. Outline for the study of scoliosis. Instr Course Lect AAOS 1948;5:261–75.
13. Perilli E, Parkinson IH, Truong LH, Chong KC, Fazzalari NL, Osti OL. Modic (endplate) changes in the lumbar spine: bone micro-architecture and remodelling. Eur Spine J 2015;24:1926–34.
14. Manara M, Varenna M. A clinical overview of bone marrow edema. Reumatismo 2014;66:184–96.
15. Videman T, Battie MC, Gibbons LE, Gill K. A new quantitative measure of disc degeneration. Spine J 2017;17:746–53.
17. Wang L, Niu Y, Kong X, et al. The application of paramagnetic contrast-based T2 effect to 3D heavily T2W high-resolution MR imaging of the brachial plexus and its branches. Eur J Radiol 2016;85:578–84.
18. Uto T, Takehara Y, Nakamura Y, et al. Higher sensitivity and specificity for diffusion-weighted imaging of malignant lung lesions without apparent diffusion coefficient quantification. Radiology 2009;252:247–54.
19. Zhang YZ, Shen Y, Wang LF, Ding WY, Xu JX, He J. Magnetic resonance T2 image signal intensity ratio and clinical manifestation predict prognosis after surgical intervention for cervical spondylotic myelopathy. Spine (Phila Pa 1976) 2010;35:E396–9.
20. Nakamae T, Kamei N, Tamura T, Kanda T, Nakanishi K, Adachi N. Quantitative assessment of bone marrow edema in adolescent athletes with lumbar spondylolysis using contrast ratio on magnetic resonance imaging. Asian Spine J 2020 Nov 16 [Epub].
https://doi.org/10.31616/asj.2020.0173
21. Schett G. Bone marrow edema. Ann N Y Acad Sci 2009;1154:35–40.
22. Saukkonen J, Maatta J, Oura P, et al. Association between Modic changes and low back pain in middle age: a northern Finland birth cohort study. Spine (Phila Pa 1976) 2020;45:1360–7.
24. Dudli S, Fields AJ, Samartzis D, Karppinen J, Lotz JC. Pathobiology of Modic changes. Eur Spine J 2016;25:3723–34.
25. Kanberoglu K, Kantarci F, Yilmaz MH. Reactive sclerosis: hyperintense appearance on T2-weighted magnetic resonance imaging. Acta Radiol 2005;46:708–15.
26. Shaikh MI, Saifuddin A, Pringle J, Natali C, Sherazi Z. Spinal osteoblastoma: CT and MR imaging with pathological correlation. Skeletal Radiol 1999;28:33–40.
28. Zhu S, Zhu J, Zhen G, et al. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J Clin Invest 2019;129:1076–93.
29. Goto T, Yamaza T, Kido MA, Tanaka T. Light- and electron-microscopic study of the distribution of axons containing substance P and the localization of neurokinin-1 receptor in bone. Cell Tissue Res 1998;293:87–93.