6. Wang L, Qian Q, Zhang Q, Wang J, Cheng W, Yan W. Classification model on big data in medical diagnosis based on semi-supervised learning. Comput J 2022;65:177–91.
8. Khan O, Badhiwala JH, Grasso G, Fehlings MG. Use of machine learning and artificial intelligence to drive personalized medicine approaches for spine care. World Neurosurg 2020;140:512–8.
13. Liszka-Hackzell JJ, Martin DP. Categorization and analysis of pain and activity in patients with low back pain using a neural network technique. J Med Syst 2002;26:337–47.
14. Bishop JB, Szpalski M, Ananthraman SK, McIntyre DR, Pope MH. Classification of low back pain from dynamic motion characteristics using an artificial neural network. Spine (Phila Pa 1976) 1997;22:2991–8.
15. Athertya JS, Kumar GS, Govindaraj J. Detection of Modic changes in MR images of spine using local binary patterns. Biocybern Biomed Eng 2019;39:17–29.
16. Athertya JS, Saravana Kumar G. Classification of certain vertebral degenerations using MRI image features. Biomed Phys Eng Express 2021;7:045013.
17. Beulah A, Sharmila TS, Pramod VK. Disc bulge diagnostic model in axial lumbar MR images using Intervertebral disc Descriptor (IdD). Multimed Tools Appl 2018;77:27215–30.
19. Herrera-Palacio A, Ventura C, Silberer C, Sorodoc IT, Boleda G, Giro-i-Nieto X. Recurrent instance segmentation using sequences of referring expressions. arXiv [Preprint] 2019 Nov 5
https://doi.org/10.48550/arXiv.1911.02103
20. Gong H, Liu J, Li S, Chen B. Axial-SpineGAN: simultaneous segmentation and diagnosis of multiple spinal structures on axial magnetic resonance imaging images. Phys Med Biol 2021;66:115014.
24. Niemeyer F, Galbusera F, Tao Y, Kienle A, Beer M, Wilke HJ. A deep learning model for the accurate and reliable classification of disc degeneration based on MRI data. Invest Radiol 2021;56:78–85.
26. Huber FA, Stutz S, Vittoria de Martini I, et al. Qualitative versus quantitative lumbar spinal stenosis grading by machine learning supported texture analysis: experience from the LSOS study cohort. Eur J Radiol 2019;114:45–50.
27. Won D, Lee HJ, Lee SJ, Park SH. Spinal stenosis grading in magnetic resonance imaging using deep convolutional neural networks. Spine (Phila Pa 1976) 2020;45:804–12.
29. Joo YB, Baek IW, Park KS, Tagkopoulos I, Kim KJ. Novel classification of axial spondyloarthritis to predict radiographic progression using machine learning. Clin Exp Rheumatol 2021;39:508–18.
30. Stanley RJ, Long R. A radius of curvature-based approach to cervical spine vertebra image analysis. Biomed Sci Instrum 2001;37:385–90.
32. Jakubicek R, Chmelik J, Jan J, Ourednicek P, Lambert L, Gavelli G. Learning-based vertebra localization and labeling in 3D CT data of possibly incomplete and pathological spines. Comput Methods Programs Biomed 2020;183:105081.
33. Liao H, Mesfin A, Luo J. Joint vertebrae identification and localization in spinal CT images by combining short- and long-range contextual information. IEEE Trans Med Imaging 2018;37:1266–75.
35. Sun H, Zhen X, Bailey C, Rasoulinejad P, Yin Y, Li S. Direct estimation of spinal Cobb angles by structured multi-output regression. arXiv [Preprint] 2020 Dec 23
https://doi.org/10.48550/arXiv.2012.12626
36. Lyu J, Ling SH, Banerjee S, et al. 3D ultrasound spine image selection using convolution learning-to-rank algorithm. Annu Int Conf IEEE Eng Med Biol Soc 2019;2019:4799–802.
37. Jaremko JL, Poncet P, Ronsky J, et al. Estimation of spinal deformity in scoliosis from torso surface cross sections. Spine (Phila Pa 1976) 2001;26:1583–91.
39. O’Connor SD, Yao J, Summers RM. Lytic metastases in thoracolumbar spine: computer-aided detection at CT: preliminary study. Radiology 2007;242:811–6.
41. Sanders NW, Mann NH 3rd. Automated scoring of patient pain drawings using artificial neural networks: efforts toward a low back pain triage application. Comput Biol Med 2000;30:287–98.
44. Ghosh S, Alomari RS, Chaudhary V, Dhillon G. Composite features for automatic diagnosis of intervertebral disc herniation from lumbar MRI. Annu Int Conf IEEE Eng Med Biol Soc 2011;2011:5068–71.
46. Parsaeian M, Mohammad K, Mahmoudi M, Zeraati H. Comparison of logistic regression and artificial neural network in low back pain prediction: second national health survey. Iran J Public Health 2012;41:86–92.
47. Oktay AB, Albayrak NB, Akgul YS. Computer aided diagnosis of degenerative intervertebral disc diseases from lumbar MR images. Comput Med Imaging Graph 2014;38:613–9.
48. Ruiz-Espana S, Arana E, Moratal D. Semiautomatic computer-aided classification of degenerative lumbar spine disease in magnetic resonance imaging. Comput Biol Med 2015;62:196–205.
49. Nikravan M, Ebrahimzadeh E, Izadi MR, Mikaeili M. Toward a computer aided diagnosis system for lumbar disc herniation disease based on MR images analysis. Biomed Eng Appl Basis Commun 2016;28:1650042.
50. Oyedotun OK, Olaniyi EO, Khashman A. Disk hernia and spondylolisthesis diagnosis using biomechanical features and neural network. Technol Health Care 2016;24:267–79.
51. Ashouri S, Abedi M, Abdollahi M, Dehghan Manshadi F, Parnianpour M, Khalaf K. A novel approach to spinal 3-D kinematic assessment using inertial sensors: towards effective quantitative evaluation of low back pain in clinical settings. Comput Biol Med 2017;89:144–9.
53. Ebrahimzadeh E, Fayaz F, Nikravan M, Ahmadi F, Dolatabad MR. Towards an automatic diagnosis system for lumbar disc herniation: the significance of local subset feature selection. Biomed Eng Appl Basis Commun 2018;30:1850044.
54. Ebrahimzadeh E, Fayaz F, Ahmadi F, Nikravan M. A machine learning-based method in order to diagnose lumbar disc herniation disease by MR image processing. MedLife Open Access 2018;1:1.
56. Hu B, Kim C, Ning X, Xu X. Using a deep learning network to recognise low back pain in static standing. Ergonomics 2018;61:1374–81.
58. Salehi E, Yousefi H, Rashidi H, Ghanaatti H. Automatic diagnosis of disc herniation in two-dimensional MR images with combination of distinct features using machine learning methods. In: Proceedings of the 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT); 2019 Apr 24–26; Istanbul, Turkey. New York (NY): IEEE. 2019
https://doi.org/10.1109/EBBT.2019.8742052
60. Varcin F, Erbay H, Cetin E, Cetin I, Kultur T. Diagnosis of lumbar spondylolisthesis via convolutional neural networks. In: Proceedings of the 2019 International Artificial Intelligence and Data Processing Symposium (IDAP); 2019 Sep 21–22; Malatya, Turkey. New York (NY): IEEE. 2019
https://doi.org/10.1109/IDAP.2019.8875988
61. Zhao S, Wu X, Chen B, Li S. Automatic spondylolisthesis grading from MRIs across modalities using faster adversarial recognition network. Med Image Anal 2019;58:101533.
63. Gao F, Liu S, Zhang X, Wang X, Zhang J. Automated grading of lumbar disc degeneration using a push-pull regularization network based on MRI. J Magn Reson Imaging 2021;53:799–806.
68. Sundarsingh S, Kesavan R. Diagnosis of disc bulge and disc desiccation in lumbar MRI using concatenated shape and texture features with random forest classifier. Int J Imaging Syst Technol 2020;30:340–7.
69. Sustersic T, Milovanovic V, Rankovic V, Filipovic N. A comparison of classifiers in biomedical signal processing as a decision support system in disc hernia diagnosis. Comput Biol Med 2020;125:103978.
70. Beulah A, Sharmila TS, Pramod VK. Degenerative disc disease diagnosis from lumbar MR images using hybrid features. Vis Comput 2022;38:2771–83.
71. Hallinan JT, Zhu L, Yang K, et al. Deep learning model for automated detection and classification of central canal, lateral recess, and neural foraminal stenosis at lumbar spine MRI. Radiology 2021;300:130–8.
77. Phan H. Diagnosis of lumbar intervertebral disc herniation and pathological characteristics based on artificial intelligence neural network. Int J Health Pharm Med 2023;4:58–76.
79. Carson T, Ghoshal G, Cornwall GB, Tobias R, Schwartz DG, Foley KT. Artificial intelligence-enabled, real-time intraoperative ultrasound imaging of neural structures within the psoas: validation in a porcine spine model. Spine (Phila Pa 1976) 2021;46:E146–52.
81. Goodwin ML, Sciubba DM,Radiation, robotics, and reconstructive options in spine tumor surgery. Singh K, Colman M, editors. Surgical spinal oncology: contemporary multidisciplinary strategies. Cham: Springer; 2020. p.335–56.
82. Kaoudi A, Capel C, Chenin L, Peltier J, Lefranc M. Robot-assisted radiofrequency ablation of a sacral S1–S2 aggressive hemangioma. World Neurosurg 2018;116:226–9.
83. Karhade AV, Schwab JH, Bedair HS. Development of machine learning algorithms for prediction of sustained postoperative opioid prescriptions after total hip arthroplasty. J Arthroplasty 2019;34:2272–7.
84. Ayling OG, Charest-Morin R, Eagles ME, et al. National adverse event profile after lumbar spine surgery for lumbar degenerative disorders and comparison of complication rates between hospitals: a CSORN registry study. J Neurosurg Spine 2021;35:698–703.
85. Durand WM, DePasse JM, Daniels AH. Predictive modeling for blood transfusion after adult spinal deformity surgery: a tree-based machine learning approach. Spine (Phila Pa 1976) 2018;43:1058–66.
86. Wang KY, Suresh KV, Puvanesarajah V, Raad M, Margalit A, Jain A. Using predictive modeling and machine learning to identify patients appropriate for outpatient anterior cervical fusion and discectomy. Spine (Phila Pa 1976) 2021;46:665–70.
88. McGirt MJ, Sivaganesan A, Asher AL, Devin CJ. Prediction model for outcome after low-back surgery: individualized likelihood of complication, hospital readmission, return to work, and 12-month improvement in functional disability. Neurosurg Focus 2015;39:E13.
92. Fatima N, Zheng H, Massaad E, Hadzipasic M, Shankar GM, Shin JH. Development and validation of machine learning algorithms for predicting adverse events after surgery for lumbar degenerative spondylolisthesis. World Neurosurg 2020;140:627–41.
93. Hopkins BS, Mazmudar A, Driscoll C, et al. Using artificial intelligence (AI) to predict postoperative surgical site infection: a retrospective cohort of 4046 posterior spinal fusions. Clin Neurol Neurosurg 2020;192:105718.
94. Hatrick NC, Lucas JD, Timothy AR, Smith MA. The surgical treatment of metastatic disease of the spine. Radiother Oncol 2000;56:335–9.
95. Karhade AV, Thio QC, Ogink PT, et al. Development of machine learning algorithms for prediction of 30-day mortality after surgery for spinal metastasis. Neurosurgery 2019;85:E83–91.
96. Karhade AV, Shah AA, Bono CM, et al. Development of machine learning algorithms for prediction of mortality in spinal epidural abscess. Spine J 2019;19:1950–9.
98. Hayashi H, Toribatake Y, Murakami H, Yoneyama T, Watanabe T, Tsuchiya H. Gait analysis using a support vector machine for lumbar spinal stenosis. Orthopedics 2015;38:e959–64.
99. Ames CP, Smith JS, Pellise F, et al. Artificial intelligence based hierarchical clustering of patient types and intervention categories in adult spinal deformity surgery: towards a new classification scheme that predicts quality and value. Spine (Phila Pa 1976) 2019;44:915–26.
101. Liawrungrueang W, Cho ST, Sarasombath P, Kim I, Kim JH. Current trends of artificial intelligence assisted spine surgery: a systematic review. Asian Spine J 2023 Dec 22 [Epub].
https://doi.org/10.31616/asj.2023.0410