Technical aspects of rod-insertion forceps (persuader) application in reducing construct failure after lumbar spine fusion surgery: a biomechanical cadaveric study in Germany

Nikolaus Kernich¹, Vincent J. Heck¹,², Nadine Ott¹, Andreas Prescher³, Peer Eysel¹, Juan Manuel Vinas-Rios¹

¹Department of Orthopaedics and Traumatology, University of Cologne Faculty of Medicine, Cologne, Germany
²Department of Spine Surgery, Sana Klinikum Offenbach, Offenbach am Main, Germany
³Institute of Molecular and Cellular Anatomy (MOCA), Aachen, Germany

Received Feb 26, 2024; Revised Mar 24, 2024; Accepted Mar 27, 2024
Corresponding author: Juan Manuel Vinas-Rios
University of Cologne Faculty of Medicine, Kerpener Str. 62, 50937, Cologne, Germany
Tel: +49-221-478-87294, Fax: +49-221-478-6060, E-mail: vinasrios@outlook.com

Introduction
Degenerative spine diseases and deformities are the most common indications for the stabilization and fusion of spinal segments. The pedicle screw–rod system is currently considered the gold standard for dorsal stabilization and fusion of the lumbar spine [1]. In particular, when treating multisegmental spinal
deformities and segmental instabilities with spondylo-
listhesis, a mismatch between the rigid pedicle screws
and the rod often occurs during surgery. Here, the
spinal surgeon uses a special instrument at his/her dis-
posal, the so-called rod persuader (RP, also called rod-
insertion forceps), which presses the rod into the head
of the pedicle screw by axially pulling it. Through tar-
gested use, this technique enables not only the treatment
deforrmities but also the repositioning of a sliding
vertebra to restore normal spine alignment. In everyday
clinical practice, RPs are also increasingly used to fit
the rod into the screw head. This technique does not re-
quire the removal of the rod again and manual shaping
it outside the site, saving surgical time [2].

Pedicle screw loosening is the most common com-
lication after dorsal instrumentation of the spine. A
study reported a pedicle screw loosening rate of 15% in
nonosteoporotic spines and up to 60% in osteoporotic
vertebral bodies [3]. Consequences of pedicle screw
loosening include painful nonunion, spinal instabil-
ity, deformation, material dislocation up to perforation
through the skin, and ultimately, the need for revision
surgery [3].

In addition to bone quality, the anchoring stability of
pedicle screws is also influenced by the screw design,
screw thickness, insertion technique, insertion torque,
and screw placement [3]. In contrast, increased axial
tension, such as that occurring when using an RP, can
result in screw loosening and even tearing out of the
screw. This effect has been examined biomechanically
in the thoracic spine without additive fusion surgery
[2,4]. Despite the widespread use of RPs in everyday
clinical and surgical practice, no biomechanical studies
have examined the biomechanical consequences of us-
using an RP in lumbar fusion surgery.

This biomechanical in vitro study aimed to examine
the extent to which the use of RPs leads to additional
mechanical stress on the pedicle screw–rod system
and its influence on the bony anchoring of the primary
pedicle screws. We hypothesized that the use of RPs
increases the tension on the rod, thereby reducing the
bony anchoring of the pedicle screw. As a secondary
outcome, this study examined whether this technique
leads to an outright extraction of the pedicle screws.

Materials and Methods

The study analyzed 10 fresh-frozen lumbar spines from
body donors at the Medical Faculty of the Anatomical
Institute. The lumbar spines were thawed before prepa-
rating and immediately sent for biomechanical analysis.

Ethical approval

All procedures performed in studies involving hu-
man participants were in accordance with the ethical
standards of the institutional and/or national research
committee and with the 1964 Helsinki declaration and
its later amendments or comparable ethical standards.
Informed consent was obtained from all individual
participants included in the study. The study’s protocol
was reviewed and approved by the Institutional Review
Board (IRB approval no., 23-1417).

Preparation of the test phase

Bisegmental spinal fusion of the L3–L5 segments was
performed using a pedicle screw–rod system (ROC-
CIA Multi-LIF Cage; Silony Medical, Leinfelden-Ech-
terdingen, Germany). The pedicle screws (Medtronic
Inc., Minneapolis, MN, USA) measured 6.5×50 mm
and were implanted into the pedicles of L3–L5 verte-
bral bodies using an image converter. Before inserting
the titanium rod, the sides were randomized into two
groups (right and left). On side 1, the titanium rod was
inserted without bending (straight). This means that
rod-insertion and all-caps serial tightening were per-
fomed without using an RP for rod reduction to the
proximal screw. On side 2, the rod was attached to the
pedicle screws of the L5 and L4, creating a 5-mm gap
between the rod and the pedicle screw in L3 caused
by the prebending of the rod. To attach the rod to the
pedicle screw despite the protrusion, an RP was used
to press the rod into the pedicle screw (Fig. 1). The rod
was left in place for 30 minutes and was then removed.

Mechanical load measurement

Rod elongation served as a measure of the mechani-
cal load on the system after attachment to the pedicle
screws. For this purpose, a strain gauge (strain gauges,
4-wire strain at 350 Omega; Vishay Measurements
Group GmbH, Heilbronn, Germany) was attached
to each rod before insertion so that it lay between the
pedicle screw of the third and fourth lumbar vertebral
bodies. Rod tension was measured before the rod was
attached to L3–L5, immediately after attachment, after
1, 5, 10, 15, 20, 25, and 30 minutes, and after the rod
was removed (Fig. 2).

Imaging/bone mineral density measurement

A high-resolution computed tomography system was
used (Siemens, Munich, Germany). During the evaluation, bone mineral density (BMD) was determined using Hounsfield units (HU).

Statistical analysis

JMP ver. 15.0 (JMP Statistical Discovery LLC, Cary, NC, USA) was used in the analysis of descriptive statistics, providing values of central tendency and dispersion, such as the means and standard deviations of all variables. Bartlett’s test for homoscedasticity was automatically performed using JMP ver. 15.0 [5]. For the comparative analysis, Student \(t \)-test was used for normally distributed continuous variables or the Wilcoxon/Kruskal-Wallis test for non-normally distributed continuous variables. For categorical variables, the chi-square test was applied, and for tables with cells <5, Fisher’s exact test was utilized. Statistical significance was defined as \(p<0.05 \).

Results

Ten vertebral bodies were prepared for the experiment, and one of them was not used because of a vertebral body fracture and pedicle fracture before preparation. Thus, only nine vertebral bodies were suitable for use in the experiment. They were divided into group 1 (\(n=9 \); persuader group) and group 2 (\(n=9 \); nonpersuader group). The mean patient age was 87±6.5 years, and there were more women (55.5%) than men. The average BMD in HU the studied vertebrae was 104±80.3 HU. The rod bending values at the beginning of the experiment (0 minutes) were 3,219±1,769 \(\mu \)m/m and 167±173 \(\mu \)m/m in groups 1 and 2, respectively (\(p<0.001 \)) (Fig. 3). At the end of the experiment (30 minutes), the rod bending values reduced to 2,511±1,854 \(\mu \)m/m and 140±172 \(\mu \)m/m in groups 1 and 2, respectively (\(p<0.001 \)) (Fig. 4). Furthermore, after the system release, rod bending persisted at 2,009±1,227 \(\mu \)m/m and 129±163 \(\mu \)m/m in groups 1 and 2, respectively (\(p<0.001 \)) (Fig. 5). Significant differences were found between the control and test specimens at all measurement points (Table 1). The same general trends were observed with no appar-
ent differences noted within those groups when further stratified based on BMD. After rod reduction, screw pullout with an average of 1.5±0.79 mm of dislocation was observed in group 1 (88.9%) compared with 0 mm of dislocation in group 2 (0%) after system release (Fig. 6).

Discussion

Despite the routine use of a pedicle screw system for the treatment of spinal instability, complications reported are severe, including screw breakage, loosening, or pullout [6,7]. In this study, the results suggest that the use of an RP has devastating biomechanical consequences by significantly increasing pedicle screw loosening and pedicle detachment. Our results, obtained through continuous measurement of rod bending using strain gauges, demonstrated that RPs not only exert axial tension to the pedicle screw but also bend the rod toward the pedicle screw. Interestingly, rod bending decreased within the first 10 minutes after connection to the

Table 1. Biomechanic parameters in group 1 and group 2 as well as macroscopic screw avulsion after persuader

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group 1: persuader (n=9)</th>
<th>Group 2: non-persuader (n=9)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted rod bending (μm/m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 min</td>
<td>3,219±1,769</td>
<td>167±173</td>
<td><0.001</td>
</tr>
<tr>
<td>1 min</td>
<td>2,960±1,850</td>
<td>149±181</td>
<td><0.001</td>
</tr>
<tr>
<td>5 min</td>
<td>2,719±1,867</td>
<td>143±161</td>
<td><0.001</td>
</tr>
<tr>
<td>10 min</td>
<td>2,672±1,867</td>
<td>142±158</td>
<td><0.001</td>
</tr>
<tr>
<td>15 min</td>
<td>2,613±1,870</td>
<td>142±175</td>
<td><0.001</td>
</tr>
<tr>
<td>20 min</td>
<td>2,558±1,873</td>
<td>141±173</td>
<td><0.001</td>
</tr>
<tr>
<td>25 min</td>
<td>2,538±1,872</td>
<td>140±173</td>
<td><0.001</td>
</tr>
<tr>
<td>30 min</td>
<td>2,511±1,854</td>
<td>140±172</td>
<td><0.001</td>
</tr>
<tr>
<td>After system release</td>
<td>2,009±1,227</td>
<td>129±163</td>
<td><0.001</td>
</tr>
<tr>
<td>Macroscopic screw avulsion</td>
<td>1.5±0.79</td>
<td>0</td>
<td>NA</td>
</tr>
</tbody>
</table>

Values are presented as mean±standard deviation. Significant differences between the groups were determined by chi-square test or Fisher’s exact test for dichotomized or categorical data. Continuous data were obtained using the independent sampling Student t-test or Mann-Whitney U test.

NA, not applicable.
screw–rod system and then changed only imperceptibly thereafter until the system was released. This indicates that an elastic restoring force continues to exert an axial pull on the screw even after using an RP. In a closed bow system, as observed in this study, approximately 10% of rod bending was “lost” in the system. Furthermore, according to the law of conservation of matter, as postulated by Lomonosov [8], in a closed system, “matter is neither created nor destroyed, it only transforms”. In the present study, this implies that further repositioning of the vertebral body (with good screw hold) or a slow axial pullout of the screw (with poor screw hold, such as in osteoporotic bones) has occurred. Similar phenomena might be observed when using a rod pusher. However, if deformity correction is not necessary, a rod pusher can still be advantageous because the initial axial stress on the pedicle screw would be less.

Because these differences were not observed when the rod was inserted without tension using an RP, the authors emphasized the importance of fitting the rod appropriately outside the surgical site using a rod bending device whenever possible. In deformity surgery, if screw pullout occurred after repositioning, implanting a pedicle screw with a larger screw diameter must be considered. Alternatively, for osteoporotic bones, cement augmentation of the pedicle screws before the repositioning maneuver can be performed to prevent material failure caused by poor bone quality. Recent research reveals a significant number of biomechanical studies evaluating the multiple variables affecting rod–pedicle screw system strength [5]. These factors include osteoporosis [9–13], pedicle morphology [10,14], pedicle screw size [15–18], screw insertion [19,20], pilot-hole tapping [21,22], insertional torque [21,23–26], and pedicle screw augmentation with cement or bone graft substitute [27].

Although the clinical consequences of decreased pedicle screw pullout strength reported in biomechanical studies need further elucidation, the significance of the apparent biomechanical effects of the rod reduction device on pedicle screw fixation, which are nearly universally used particularly during longitudinal construct assembly for posterior instrumentation, cannot be understated. Thus, our results suggest that the rod reduction maneuver causes weakening of the screw–bone interface with consequent rupture by forcing the pedicle screw to be pulled out from the osseous canal, causing fractures in the lumbar spine [5]. A threshold mismatch distance may have existed between the rod and pedicle screw construct that precludes catastrophic failure of the screw. Furthermore, depending on the complexity of the spine pathology, an RP could be used in situations with an important ventral–dorsal mismatch such as spondylolisthesis.

A limitation of this study is the evaluation of an isolated pedicle screw system. Although a comparison of all available commercial pedicle screw systems is untenable, the findings of this study could not be generalized to other screw systems. This issue could depict the failure rate between one screw type and another, requiring improvements in spondylodesis material and further investigations. In addition, cemented pedicle screws in osteoporotic specimens should be compared with pedicle screws with a larger diameter. Furthermore, as with mostly cadaveric biomechanical studies, the whole experiment under controlled conditions is limited by a small sample size and is dependent on the availability of specimens in the laboratory. Although each spine level was compared by pair, variations in the bone matrix quality and pedicle morphology may bias the results. Our laboratory setting enables the use of an X-ray device (fluoroscope) with direct visualization of the vertebral composition, allowing for optimal trajectories of pedicle screws and avoiding accidental fractures of the vertebral body along the axis of the pedicle screw during experiments.

Overall, our results may have significant application in the clinical setting. Although many spine surgeons promoted the rod reduction technique to be safe and effective, they may unknowingly compromise the biomechanical fixation strength of the manipulated pedicle screw. Therefore, close observation of the bone–screw interface during any reduction technique is necessary. Based on the results of our in vitro experience, many intraoperative screw pullout events may be unnoticed when using an RP. Despite the ease and convenience of rod reduction, our results point out that this technique biomechanically results in a poor pedicle screw pullout strength, increased failure of the screw–rod system, and subsequent instability in the operated spine segments. Nevertheless, the exact biomechanical mismatch of the RP through rod reduction on the overall system is poorly understood and was not assessed in this study. A detailed literature search did not yield clinical studies evaluating the abovementioned question. Pedicle screw loosening after using an RP may not be necessary after unilateral reduction in the middle part of a long screw–rod construct. However, screw loosening could be catastrophic with the use of an RP at the cranial or caudal portion of a long screw–rod construct or bilateral at the same level. Techniques to reduce the use of an RP should include rod contouring, using polyaxial screw...
Conclusions

RP reduction increases pedicle screw pullout in the lumbar spine and typically results in failure of the spondylodesis material. Therefore, in cases where a rod does not fully fit within the pedicle screw head, the use of an RP should proceed with caution, particularly in the osteoporotic spine. Techniques for reducing the need for rod reduction to the pedicle screw heads may include further rod contouring, using polyaxial screw heads, adjusting the screw depth, or redirecting the pedicle screw trajectory. Ultimately, surgeons must be patient, and a detailed preoperative in intraoperative surgical planning is necessary.

Although many confounding factors are likely involved in patient outcomes after spinal surgery, most surgeons use rod reduction devices in the clinical setting. Clinical examinations of the effects of rod reduction on construct failure or pseudarthrosis rates are necessary.

Key Points

- This study involved the use of 10 lumbar spines from body donors. A bi-segmental dorsal spinal lumbar interbody fusion of the L3–L5 segments was performed using a pedicle screw rod system (ROCCIA Multi-LIF Cage, Silony Medical, Germany).
- It was demonstrated through continuous measurement of rod bending using strain gauges, that the use of a rod-persuader not only applies axial tension to the pedicle screw but also bends the rod towards the pedicle screw. Interestingly, rod bending decreased within the first 10 minutes after connection to the screw-rod system and then changed only imperceptibly thereafter until the system was released. This indicates that an elastic restoring force continues to exert axial pull on the screw even after the use of the rod-persuader has ceased.
- The study highlights the importance that rod persuader reduction increases pedicle screw pull-out in the lumbar spine and typically results in failure of the spondylodesis material.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

ORCID

Nikolaus Kernich: https://orcid.org/0000-0001-8540-5725; Vincent J. Heck: https://orcid.org/0000-0002-2541-6032; Nadine Ott: https://orcid.org/0000-0001-7865-8425; Andreas Prescher: https://orcid.org/0000-0002-8241-5351; Peer Eysel: https://orcid.org/0000-0002-9929-3370; Juan Manuel Vinas-Rios: https://orcid.org/0000-0003-1176-0075

Author Contributions

Conceptualization: NK. Methodology: NK, VJH, NO, JMVR. Data curation: VJH, JMVR. Investigation: NK, VJH. Formal analysis: JMVR. Validation: JMVR. Resources: NO, AP. Supervision: PE. Writing–original draft: NK, VJH, JMVR. Writing–review & editing: NK, VJH, NO, AP, JMVR. Final approval of the manuscript: all authors.

References

